
New Generic Attacks which are Faster than Exhaustive Search

New Generic Attacks which are Faster than

Exhaustive Search

Christophe De Cannière, Itai Dinur, and Adi Shamir

Katholieke Universiteit Leuven

Weizmann Institute of Science

Ecole Normale Supérieure

February 24, 2009



New Generic Attacks which are Faster than Exhaustive Search

Question

Question

Every n-bit block cipher c = E (k, p) can be broken in 2n

operations by exhaustive search.

Question:

Can we do (slightly) better?



New Generic Attacks which are Faster than Exhaustive Search

Cube Attacks

Let us try to use Cube Attacks

Classical Cube Attack

E : (k , v) 7→ c

Attacker controls public value v (chosen plaintext)

Goal: recover secret key k

Attack exploits non-randomness of E

Will not work if E (k, v) is random function of degree 2 · n

k, v , p, and c are all n-bit words



New Generic Attacks which are Faster than Exhaustive Search

Cube Attacks

Let us try to use Cube Attacks

How about related keys?

E : (k ⊕ v , 0) 7→ c

Attacker controls public value v (related key)

Goal: recover secret key k

k, v , p, and c are all n-bit words



New Generic Attacks which are Faster than Exhaustive Search

Cube Attacks

Observation

Main observation: ki and vi never appear together in the
same monomial of E (k ⊕ v , 0)

E (k ⊕ v , 0) = · · · + v1v3v4v6(k2 + k8k5k7 + k2k7k8) + · · ·



New Generic Attacks which are Faster than Exhaustive Search

Cube Attacks

Observation

Main observation: ki and vi never appear together in the
same monomial of E (k ⊕ v , 0)

E (k ⊕ v , 0) = · · · + v1v3v4v6(k2 + k8k5k7 + k2k7k8) + · · ·

⇒ Summing over the cube v1v3v4v6 eliminates k1, k3, k4, and k6

from the corresponding superpoly.



New Generic Attacks which are Faster than Exhaustive Search

Cube Attacks

Observation

Main observation: ki and vi never appear together in the
same monomial of E (k ⊕ v , 0)

E (k ⊕ v , 0) = · · · + v1v3v4v6(k2 + k8k5k7 + k2k7k8) + · · ·

⇒ Summing over the cube v1v3v4v6 eliminates k1, k3, k4, and k6

from the corresponding superpoly.

⇒ Generic attack: works even when E (k ⊕ v , 0) has degree n

(highest possible degree)



New Generic Attacks which are Faster than Exhaustive Search

Cube Attacks

Attacking E (k ⊕ v , p)

Precomputation

Fix plaintext p (e.g., p = 0)

Sum over cube vm+1vm+2 · · · vn and obtain superpoly
gi (k1, k2 · · · km) for each of the n ciphertext bits ci

v1v2 · · · vmvm+1 · · · vn−2vn−1vn

k1k2 · · · kmkm+1 · · · kn−2kn−1kn

Cost: 2n function evaluations



New Generic Attacks which are Faster than Exhaustive Search

Cube Attacks

Attacking E (k ⊕ v , p)

Precomputation

System of n nonlinear equations in m variables

g1 = k2 + k4 · · · + k1k2 · · · km

g2 = k1 + k5k7 · · · + k1k2 · · · km

...
gn = k3 + k5k7 · · ·

2m monomials



New Generic Attacks which are Faster than Exhaustive Search

Cube Attacks

Attacking E (k ⊕ v , p)

Precomputation

m linear expressions in n variables

k1 = g1 + g2 + g7 · · ·

k2 = g2 + g8 · · · + gn

...
km = g5 + g8 · · ·

n variables

If m = log n ⇒ linearize and solve

Store these log n vectors of n bits in memory



New Generic Attacks which are Faster than Exhaustive Search

Cube Attacks

Attacking E (k ⊕ v , p)

Online Phase

Compute g1 · · · gn by summing the ciphertexts over the cube
vm+1vm+2 · · · vn

Recover k1, k2 · · · km using precomputed vectors

Exhaustively search for remaining n − m key bits

Cost: 2n−m + 2n−m =
2

n
2n function evaluations



New Generic Attacks which are Faster than Exhaustive Search

Cube Attacks

Attacking E (k ⊕ v , p)

Online Phase

Compute g1 · · · gn by summing the ciphertexts over the cube
vm+1vm+2 · · · vn

Recover k1, k2 · · · km using precomputed vectors

Exhaustively search for remaining n − m key bits

Cost: 2n−m + 2n−m =
2

n
2n function evaluations

⇒ What did we achieve: reduction of time by a factor n/2
in exchange for log n words of memory (each n bits long)



New Generic Attacks which are Faster than Exhaustive Search

Standard TMTO Attack

Standard TMTO Attack

Precomputation

Compute E (x , 0) for each

x = x1 · · · xm0000000 · · · 00

Store these 2m = n words in memory

Online Phase

Compute E (k ⊕ v , 0) for each

v = 00 · · · 0vm+1vm+2 · · · vn

Check for match in memory

If match: k = v ⊕ x



New Generic Attacks which are Faster than Exhaustive Search

Standard TMTO Attack

Standard TMTO Attack

Cost: 2n−m =
1

n
2n function evaluations

⇒ What did we achieve: reduction of time by a factor n

in exchange for n words of memory (of n bits each)



New Generic Attacks which are Faster than Exhaustive Search

Tweaked TMTO Attack

Tweaked TMTO Attack

Precomputation

Compute E (x , 0) for each

x = x1 · · · xm0000000 · · · 00

Store the m first bits of these 2m = n words in memory

Online Phase

Compute E (k ⊕ v , 0) for each

v = 00 · · · 0vm+1vm+2 · · · vn

Check for match in memory (in m first bits)

If match (very likely): recompute E (x , p)

If match remains: k = v ⊕ x



New Generic Attacks which are Faster than Exhaustive Search

Tweaked TMTO Attack

Tweaked TMTO Attack

Cost: 2 · 2n−m =
2

n
2n function evaluations

⇒ What did we achieve: reduction of time by a factor n/2
in exchange for n words of memory (of log n bits each)



New Generic Attacks which are Faster than Exhaustive Search

Tweaked TMTO Attack

Summary

cube attack plain TO tweaked TO

Function evaluations
2

n
2n

1

n
2n

2

n
2n

Memory (n-bit words) log n n log n

Precomputation 2n n n

Memory accesses 1
1

n
2n

1

n
2n


	Question
	Cube Attacks
	Standard TMTO Attack
	Tweaked TMTO Attack

