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Question

Question

Every n-bit block cipher c = E (k, p) can be broken in 2n

operations by exhaustive search.

Question:

Can we do (slightly) better?
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Cube Attacks

Let us try to use Cube Attacks

Classical Cube Attack

E : (k , v) 7→ c

Attacker controls public value v (chosen plaintext)

Goal: recover secret key k

Attack exploits non-randomness of E

Will not work if E (k, v) is random function of degree 2 · n

k, v , p, and c are all n-bit words
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Cube Attacks

Let us try to use Cube Attacks

How about related keys?

E : (k ⊕ v , 0) 7→ c

Attacker controls public value v (related key)

Goal: recover secret key k

k, v , p, and c are all n-bit words



New Generic Attacks which are Faster than Exhaustive Search

Cube Attacks

Observation

Main observation: ki and vi never appear together in the
same monomial of E (k ⊕ v , 0)

E (k ⊕ v , 0) = · · · + v1v3v4v6(k2 + k8k5k7 + k2k7k8) + · · ·
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Cube Attacks

Observation

Main observation: ki and vi never appear together in the
same monomial of E (k ⊕ v , 0)

E (k ⊕ v , 0) = · · · + v1v3v4v6(k2 + k8k5k7 + k2k7k8) + · · ·

⇒ Summing over the cube v1v3v4v6 eliminates k1, k3, k4, and k6

from the corresponding superpoly.
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Cube Attacks

Observation

Main observation: ki and vi never appear together in the
same monomial of E (k ⊕ v , 0)

E (k ⊕ v , 0) = · · · + v1v3v4v6(k2 + k8k5k7 + k2k7k8) + · · ·

⇒ Summing over the cube v1v3v4v6 eliminates k1, k3, k4, and k6

from the corresponding superpoly.

⇒ Generic attack: works even when E (k ⊕ v , 0) has degree n

(highest possible degree)
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Cube Attacks

Attacking E (k ⊕ v , p)

Precomputation

Fix plaintext p (e.g., p = 0)

Sum over cube vm+1vm+2 · · · vn and obtain superpoly
gi (k1, k2 · · · km) for each of the n ciphertext bits ci

v1v2 · · · vmvm+1 · · · vn−2vn−1vn

k1k2 · · · kmkm+1 · · · kn−2kn−1kn

Cost: 2n function evaluations
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Cube Attacks

Attacking E (k ⊕ v , p)

Precomputation

System of n nonlinear equations in m variables

g1 = k2 + k4 · · · + k1k2 · · · km

g2 = k1 + k5k7 · · · + k1k2 · · · km

...
gn = k3 + k5k7 · · ·

2m monomials
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Cube Attacks

Attacking E (k ⊕ v , p)

Precomputation

m linear expressions in n variables

k1 = g1 + g2 + g7 · · ·

k2 = g2 + g8 · · · + gn

...
km = g5 + g8 · · ·

n variables

If m = log n ⇒ linearize and solve

Store these log n vectors of n bits in memory
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Cube Attacks

Attacking E (k ⊕ v , p)

Online Phase

Compute g1 · · · gn by summing the ciphertexts over the cube
vm+1vm+2 · · · vn

Recover k1, k2 · · · km using precomputed vectors

Exhaustively search for remaining n − m key bits

Cost: 2n−m + 2n−m =
2

n
2n function evaluations
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Cube Attacks

Attacking E (k ⊕ v , p)

Online Phase

Compute g1 · · · gn by summing the ciphertexts over the cube
vm+1vm+2 · · · vn

Recover k1, k2 · · · km using precomputed vectors

Exhaustively search for remaining n − m key bits

Cost: 2n−m + 2n−m =
2

n
2n function evaluations

⇒ What did we achieve: reduction of time by a factor n/2
in exchange for log n words of memory (each n bits long)
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Standard TMTO Attack

Standard TMTO Attack

Precomputation

Compute E (x , 0) for each

x = x1 · · · xm0000000 · · · 00

Store these 2m = n words in memory

Online Phase

Compute E (k ⊕ v , 0) for each

v = 00 · · · 0vm+1vm+2 · · · vn

Check for match in memory

If match: k = v ⊕ x
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Standard TMTO Attack

Standard TMTO Attack

Cost: 2n−m =
1

n
2n function evaluations

⇒ What did we achieve: reduction of time by a factor n

in exchange for n words of memory (of n bits each)
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Tweaked TMTO Attack

Tweaked TMTO Attack

Precomputation

Compute E (x , 0) for each

x = x1 · · · xm0000000 · · · 00

Store the m first bits of these 2m = n words in memory

Online Phase

Compute E (k ⊕ v , 0) for each

v = 00 · · · 0vm+1vm+2 · · · vn

Check for match in memory (in m first bits)

If match (very likely): recompute E (x , p)

If match remains: k = v ⊕ x
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Tweaked TMTO Attack

Tweaked TMTO Attack

Cost: 2 · 2n−m =
2

n
2n function evaluations

⇒ What did we achieve: reduction of time by a factor n/2
in exchange for n words of memory (of log n bits each)
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Tweaked TMTO Attack

Summary

cube attack plain TO tweaked TO

Function evaluations
2

n
2n

1

n
2n

2

n
2n

Memory (n-bit words) log n n log n

Precomputation 2n n n

Memory accesses 1
1

n
2n

1

n
2n
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